Journal of Organometallic Chemistry, 320 (1987) 145–162 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ALKYLIDENVERBRÜCKTE DIPHOSPHANE UND DICHALKOGENODIPHOSPHORANE ALS LIGANDEN IN KATIONISCHEN CYCLOPENTADIENYLEISENCARBONYL-KOMPLEXEN

HANS SCHUMANN

Fachbereich 6 - Anorganische Chemie - der Universität - GH Duisburg, Lotharstrasse 1, D-4100 Duisburg 1 (B.R.D.)

(Eingegangen den 22. August 1986)

Summary

Oxidative cleavage of the Fe-Fe bond in $[C_5H_5Fe(CO)_2]_2$ in the presence of alkylide-bridged diphosphanes L-L $(L-L = (C_6H_5)_2P(CH_2)_n(P(C_6H_5)_2; n = 1-3), (C_6H_5)_2PCH_2As(C_6H_5)_2$ and dichalcogenodiphosphoranes (X)L-L(X) $((X)L-L(X) = (C_6H_5)_2P(X)(CH_2)_n(X)P(C_6H_5)_2; X = O, S, Se; n = 1-3)$ yields the complexes $[C_5H_5Fe(CO)_2L']BF_4$ (L' = L-L, (X)L-L(X); X = S, Se) in high yield. The complexes react with Ni(CO)₄ under photochemical conditions to form $[C_5H_5Fe(CO)_2(\mu-L')Ni(CO)_3]BF_4$ in quantitative yield, and lose a CO group under irradiation $(\lambda_{max} > 300 \text{ nm})$ to form the chelate compounds $[C_5H_5Fe(CO)L']BF_4$, which are isolable for L' = L-L (only P,P ligands) and identified by spectroscopic methods for L' = L-L (P,As ligand) and (X)L-L(X) (X = S, Se). Some substitution reactions with phosphanes are described.

Zusammenfassung

Die oxidative Spaltung der Fe-Fe-Bindung in $[C_5H_5Fe(CO)_2]_2$ in Gegenwart von alkylidenverbrückten Diphosphanen L-L (L-L = $(C_6H_5)_2P(CH_2)_nP(C_6H_5)_2$; n = 1-3), $(C_6H_5)_2PCH_2As(C_6H_5)_2$ und Dichalkogenodiphosphoranen (X)L-L(X); $((X)L-L(X) = (C_6H_5)_2P(X)(CH_2)_n(X)P(C_6H_5)_2$; X = O, S, Se; n = 1-3) führt zu den Komplexen $[C_5H_5Fe(CO)_2L']BF_4$ (L' = L-L, (X)L-L(X), X = S, Se) in hohen Ausbeuten. Diese Komplexe reagieren unter photochemischen Bedingungen mit Ni(CO)₄ unter Bildung von $[C_5H_5Fe(CO)_2(\mu-L')Ni(CO)_3]BF_4$ in quantitativer Ausbeute und geben eine CO-Gruppe bei Bestrahlung ($\lambda_{max} > 300$ nm) unter Bildung von Chelatkomplexen des Typs $[C_5H_5Fe(CO)L']BF_4$ ab, die für L' = L-L (nur P,P-Liganden) isolierbar sind und für L' = L-L (P,As-Ligand) und (X)L-L(X) (X = S, Se) mittels spektroskopischer Methoden identifiziert worden sind. Einige Substitutionsreaktionen mit Phosphanen werden beschrieben.

Einleitung

Methylenverbrückte Diphosphane des Typs $R_2P(CH_2)_nPR_2$ (R meist CH₃ und C₆H₅) gehören zu den am häufigsten verwendeten zweizähnigen Phosphanliganden in der anorganischen und metallorganischen Chemie [1]. Liganden dieses Typs zeichnen sich neben ihren guten Donor/Akzeptoreigenschaften durch ihre vielseitigen Koordinationsmöglichkeiten aus [2].

Neben der einzähnigen Anbindung der Liganden (nachfolgend abgekürzt mit L-L) in Komplexen des Typs A [3] ist die verbrückende Koordinationsweise sowohl in bimetallischen Verbindungen des Typs B [4] als auch in den heterobimetallischen Komplexen C [5] möglich und auch realisiert worden. Die chelatisierende Anbindungsweise D wird häufig bei photochemischer oder thermischer Behandlung der Komplexe A beobachtet [6].

Ohwohl eine Vielzahl von Untersuchungen an entsprechenden Cyclopentadienyleisen-Komplexen mit Liganden des Typs L.-L durchgeführt wurden [3.4,6], liegen vergleichsweise wenige spektroskopische Daten zu diesem System vor [3d]. Die Oxidation der Liganden L.-L durch die Chalkogenide Sauerstoff, Schwefel und Selen [7] führt zu methylenverbrückten Dichalkogenodiphosphoranen des Typs (X)L-L(X), die sich als zweizähnige Liganden mit entsprechenden Koordinationsweisen **A**-**D** eignen sollten [8].

In Fortsetzung unserer Arbeiten zum Koordinationsverhalten von Liganden der V. [9] und VI. Hauptgruppe [10] gegenüber dem Cyclopentadienyleisensystem berichten wir nachfolgend über die Darstellung und spektroskopischen sowie chemischen Untersuchungen entsprechender Komplexe mit alkylidenverbrückten Diphosphanen (L-L) und Dichalkogenodiphosphoranen ((X)L-L(X)).

Synthese und Chemische Eigenschaften

Die Darstellung von Komplexen des Typs $[C_5H_5Fe(CO)_2L'] \times (L' = Zwei-$ Elektronen-Donor) erfolgt in der Literatur meist über Solvenskomplexe wie $<math>[C_5H_5Fe(CO)_2(LM)]BF_4$ (LM = Aceton [3a,3c], CH_3CN [3d] und THF [11]), aus denen das koordinierte Solvensmolekül durch den Liganden L' verdrängt wird. Durch die Darstellung und die Unbeständigkeit dieser Solvenskomplexe (insbesondere mit LM = Aceton und THF) ist dieses Verfahren aufwendiger als das von

m, m': metallorganische Zentren

$$L \longrightarrow L: R_2 \overline{P} \longrightarrow (CH_2)_0 \longrightarrow \overline{P}R_2$$

$$\begin{array}{c} & & \\ &$$

Fig. 1. Übersicht über mögliche Koordinationsweisen für zweizähnige Liganden (L - L).

uns nachfolgend beschriebene Verfahren: Die Darstellung von Komplexen des Typs $[C_5H_5Fe(CO)_2L']BF_4$ gelingt in sehr guten Ausbeuten durch Spaltung der Metall-Metall Bindung in $[C_5H_5Fe(CO)_2]_2$ mittels Ferriceniumkationen $[(C_5H_5)_2-Fe]X$ (X = BF₄, PF₆, SbF₆) [12] in Gegenwart der Liganden L'.

Die oxidative Spaltung von dimeren Cyclopentadienyleisendicarbonyl (I) in Anwesenheit je zweier Äquivalente der Liganden IIa-d und des Oxidationsmittels III erfolgt sehr schnell: Innerhalb von ca. 60 s schlägt die Farbe der Reaktionslösung von tiefblau-violett (I und III) zur gelb-orangen Farbe der Produkte IV um (Gl. 1).

$$\begin{bmatrix} C_{5}H_{5}Fe(CO)_{2} \end{bmatrix}_{2} + 2 L \frown L + 2 \begin{bmatrix} (C_{5}H_{5})_{2}Fe \end{bmatrix} BF_{4} \xrightarrow{CH_{2}CI_{2} : Ar}{-2(C_{5}H_{5})_{2}Fe} 2 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -2(C_{5}H_{5})_{2}Fe \end{bmatrix} BF_{4} (1)$$
(I) (II a-d) (III) (II a-d) (III) (II a-d)

c $(C_6H_5)_2P = (CH_2)_3 \longrightarrow P(C_6H_5)_2$ d $(C_6H_6)_2P \longrightarrow CH_2 \longrightarrow As(C_6H_5)_2$

Die nach der Aufarbeitung in sehr guten Ausbeuten isolierbaren Komplexe IV werden als luftstabile, blassgelbe bis gelbbraune mikrokristalline Pulver erhalten, die eine hohe Tendenz zur elektrostatischen Aufladung zeigen. Die Komplexe lösen sich unzersetzt in polaren Lösungsmittel wie Aceton, Methylenchlorid und Nitromethan; NMR-spektroskopische Untersuchungen belegen jedoch eine langsame Zersetzung, insbesondere in Aceton. Die Ausbeuten sowie die spektroskopischen Daten der Komplexe IV, V, VII und VIII–XI sowie der nichtkoordinierten Liganden II und VI sind in den Tabellen 1 bis 5 zusammengefasst.

Die Bestrahlung der Komplexkationen IV in CH_2Cl_2 -Lösung gemäss Gl. 2 führt zu den Chelatkomplexen V; die Geschwindigkeit der CO-Eliminierung nimmt in der Reihenfolge IIc > IIb > IIa \gg IId stark ab. Im Falle der Liganden IIa und IId ist die Photolyse von Zersetzung begleitet, die auf die gesteigerte Reaktivität der Chelatkomplexe V aufgrund der in gleicher Richtung zunehmenden Ringspannung zurückzuführen ist.

Die Komplexe Va-c werden als gelbe kristalline Feststoffe erhalten, die in Lösung längere Zeit ohne Zersetzung stabil sind. Hingegen lässt sich der Komplex Vd trotz langer Bestrahlungszeiten und schonender Aufarbeitung nur als Gemisch mit IVd erhalten. Versuche zur Trennung des Gemisches IVd/Vd mittels Umkristallisation aus Aceton/Ether (1/1) führten zur Zersetzung von Vd.

Die Verwendung der alkylidenverbrückten Dichalkogenodiphosphorane VI anstelle der Diphosphane II führt nur im Falle von X = S, Se (VId-i) zu iso-

Komplex	Ausbeute	Farbe "	Analysen (g	ef. (ber.) (等))		
	$(\widetilde{\gamma})$		C^{-h}	11 /	Fet	
IVa	92	blassgelb	59.41	4.28	8.7	
		~	(59.28)	(4.17)	(8.6)	
IVb	93	gelb	60.03	44	8.5	
		967 1	(59.84)	(4.38)	(8.4)	
IVc	75	gelbbraun	60.01	4.53	8.2	
		-	(60.04)	(4.59)	(8.3)	
IVd	83	gelbbraun	55.63	3.92	<u>8.</u>]	
			(\$5.51)	(3.90)	(8.1)	
Va	83	gelb	60.13	4.41	9,0	
			(60.02)	(4.36)	(9,0)	
Vb	82	gelb	60.72	4.63	8,8	
		* 21	(60.59)	(4.58)	(8.8)	
Ve	95	gelh	61.05	4.82	8,8	
			(61.1.3)	(4.79)	(8,6)	
VIId	82	braun	54.22	3.85	7.9	
			(53.95)	(3.79)	(7.8)	
VIIe	73	rotbraun	54.62	4.03	7.7	
			(54.56)	(4.00)	(7.7)	
VIII	62	braun	55.31	4.28	7.6	
			(55.15)	(4.19)	(7.5)	
VIIg	78	hellbraun	47.79	3.41	6.9	
-			(47.70)	(3.35)	(6.9)	
VIIh	71	rotbraun	48.56	3,59	6.9	
			(48.30)	(3.54)	(6.8)	
VIIi	65	gelbbraun	49.21	3.85	6.8	
		-	(48,93)	(3.73)	(6.7)	

TABELLE I AUSBEUTEN UND ANALYTISCHE DATEN DER KOMPLEXE IV, V UND VII

^a Alle Komplexe werden als mikrokristalline Pulver erhalten. ^b Durchgeführt im mikroanalytischen Labor Dornis und Kolbe, Mülheim/Ruhr. ⁱ Nach Aufschluss mit HNO₃/H₂SO₄ mittels AAS (Perkin–Elmer Atom-Absorptionsspektrometer 300) bestimmt.

$$1 + 2 (X)L (X) + 2 II = \frac{CH_2CI_2 AF}{-2(C_8H_8)_2Fe} = 2 \begin{bmatrix} Q_{12} & Q_{12} & Q_{12} & Q_{12} \\ Q_{12} & Q_{12} & Q_{12} & Q_{12} \\ Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} \\ Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} \\ Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} \\ Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} \\ Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} \\ Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} \\ Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} & Q_{12} \\ Q_{12} & Q_{12} \\ Q_{12} & Q_{$$

lierbaren Komplexen des Typs VII, die allerdings deutlich empfindlicher als die entsprechenden Diphosphan-Komplexen IV sind (Gl. 3). Während sich im Falle der Komplexe mit den Liganden (X)L-L(X) (X = S, Se) als Zersetzungsprodukte zumeist $[C_5H_5Fe(CO)_3]BF_4$ und nichtkoordinierte Liganden VI nachweisen lassen (für X = Se werden auch geringe Mengen elementares Selen gefunden) [10] werden für Systeme mit X = O nur anorganische Zersetzungsprodukte sowie dimeres Cyclopentadien beobachtet. Entsprechende Beobachtungen wurden bereits mit Liganden des Typs R₃P=O am Cyclopentadienyleisen-System gemacht [10d].

Bestrahlung der Komplexe VIId-i in CH_2Cl_2 -Lösung führt unter langsamer CO-Entwicklung zu den allerdings nicht isolierbaren Chelatkomplexen VIIId,e,g,h, die neben dem Ausgangskomplexen nur spektroskopisch nachweisbar sind (vergl. Tabelle 2 bis 4). Entsprechende photochemische Umsetzungen in Aceton-Lösung führt unter sonst gleichen Reaktionsbedingungen (siehe experimentellen Teil) zur vollständigen Zersetzung der Komplexe VII. Im Falle der Komplexe VIIf,i wird neben dem Ausgangsmaterial nur polymeres Produkt gefunden, da die Bildung von Siebenringsystemen nicht begünstigt ist.

Die Verbindungen IV und VII bzw. V und VIII stellen Vertreter der Koordinationstypen A und D der Liganden L' (L' = L-L und (X)L-L(X)) dar. Die Komplexe IV und VII sollten sich zur gezielten Darstellung von Komplexen des Strukturtyps B und C eignen: Untersuchungen anderer Arbeitsgruppen belegen die Darstellung von Komplexen des Typs B (m = $[C_5H_5Fe(CO)_2]BF_4$ [3a,3c]) * und C (m = $[C_5H_5Fe(CO)_2]BF_4$, m' = CoCl₂ [2,3c]).

Zur Synthese von heterobimetallischen Komplexen, die die Koordinationsform C der überbrückten Liganden L' aufweisen, wurde $Ni(CO)_4$ (m' = $Ni(CO)_3$) verwendet, da die photochemische oder thermische Substitution einer CO-Gruppe leicht gelingt [13]. Die Umsetzung der Komplexe IVa-c mit überschüssigem $Ni(CO)_4$ liefert nach 5 min Bestrahlung in Aceton die Komplexe IX als einzige ³¹P-NMR-spektroskopisch nachweisbare Produkte, die nicht isoliert und nur über ³¹P-NMR Spektroskopie charakterisiert wurden.

Setzt man hingegen den Komplex IVd, der den gemischten Phosphan/Arsan Liganden IId enthält und nach ³¹P-NMR Messungen nur über den Phosphor koordiniert ist, photochemisch ist Ni(CO)₄ um, so beobachtet man gemäss Gl. 6 die

(Fortsetzung s. S. 155)

^{*} Auf eine detaillierte Untersuchung dieses Verbindungstyps wurde aufgrund der Schwerlöslichkeit der entsprechenden Komplexe verzichtet. Die gezielte Darstellung ist gemäss Gl. 1 unter Verwendung eines Äquivalents an L' möglich; die Ausbeuten liegen bei ca. 90% ³¹P-NMR Daten für $[(C_5H_5Fe(CO)_2)_2(\mu-L')](BF_4)_2$: L' = VIg + 23.9 ppm und L' = VIh + 35.5 ppm.

Komulex	ArcH .)	/ DH/	A FITA	SIC H V	110.7		C. and dives
	0/2112/	(11 T) ((1111)/	01251151	(II])/	a(C ₆ 11 ₅)	SODSUBC
IVa	3.83(d)	1.11		5.5()(d)	1.5	7.27(m:6H)/7.42(m:6H)/ 7.60(m:8H)	
IVb	2.80(mtbr) 2.93(mtbrtk)			5.51(br)		2.3)(mt8H)/759(mt12H)	
IVc	1.42(m:br) 2.92(m:br) 3.05(m:br;k)			5.47(br)		7.32(mt8H),/7.58(mt12H)	
PAI	3.62(d)	9.5		5.49(J)	<u>ج</u>	Pr. 2.27(m:6H), 7.36(m:4H) 4.07 48(m:4H), 7.56(m:2H) 7.65(m:4H) *	
Va	4.46(dt)	сі <u>сі</u>	16.3	5.26(t)	4. 1	7.53tm:12H) /7.63tm:4H)/ 7.83tm:4H)	
Vb	3.06(br)			5.14(br)		7.33 – 7.62(m) - 7.89(br)	
Vc	2.13(t) 2.81(m.br)	14.3		4.75(br)		7.23(m:4H), 7.39+7.58(m:16H)	
МИД	4.69 (AB: J(AB) 12.5)			5.14(s)		7.35+7-59(m;1211)/27.80+7.96 (m:811)	
	4.73						

¹H-NMR DATEN DER KOMPLEXKATIONEN IV, V
, VII. VIII UND XI $^{\prime\prime}$

TABELLE 2

VIIe	2.75(m)	5.32(s)	7.49-7.60(m;6H)/7.73(m;4H)/	
	3.21(m:k)		7.84–7.92(m:10H)	
VIII	1.85(m)	5.33(s)	7.50/7.82/7.95(m;20H)	
	2.88(m;br)			
	3.30(m;br;k)			
VIIg	4.13(m;br)	5.00(s)	7.34-7.77(m;12H)/7.83-7.94	
			(m:8H)	
VIIh	3.27(m;br)	5.23(s)	7.55/7.81/7.95(m,20H)	
	4.91(m;br;k)			
VIIi	1.98(m;br)	5.27(s)	7.49/7.75/7.91(m,20H)	
	3.05(m;br)			
	3.48(m;br;k)			
VIIIg	4.67(m;br)	4.95(s)	7.50-7.67(m;br;20H)	
VIIIh	2.90(m)	4.64(s)	7.51-7.94(m;20H)	
XIa	2.92(m)	4.73(br)	7.25-7.90(m;br;20H) 1.20(d; J()	; J(PH) 8.5);
			P(CH ₃) ₃)	(٤(١
AIX	2.90(m)	4.70(br)	7.44–7.98(m:20H) 0.84(d; J(; J(PH) 6.9);
			P(CH ₃) ₃)	(1)3)
" Bruker AM	400 (400.1 MHz); Lösungsmittel: CD ₂ Cl ₂ und Aceton-d	l6. Verwendete Abkürzungen: br	breit; d Dublett; k CH2-Gruppe an koordinierter	erten P; m

Multiplett; t Triplett; AB,AXX Spinsystem, nach dem die Auswertung vorgenommen wurde. ^h Zuordnung gestützt auf ²D-NMR Untersuchungen des freien Liganden und entsprechender As(C₆H₅)₃-Komplexe.

Komplex	δ(CH ₂)	8(C ₅ H ₄)	$\delta(C_nH_{\star})^{-h}$	δ(CO)	Sonstige
IVa	32.87(t; J_28.9)	89.67	k:C(1):H37,49(dd:J=13.1:J(P'C)=8); o-C:H33.73(d:J=2),11):m-C:H3346(d:J=10.1); p-C:H32.78(d:J=2),uk:C(1):H319(dd:J=51.3:J(P'C)=4); o-C:H20.48); p-C:H20.93; C(H20.48); p-C:H20.93; P-C:H20.48; p-C:H20.93; C(H20.48); p-C:H20.93; P-C:H20.48; p-C:	211.18(dd. <i>J</i> 23.1(J(P'C) 1.5)	
IVb	22.85(dd: <i>J</i> -12.7;J(P [.] C) 3.8)	89.61	k:C(1):138.04(d;J_14,1);n-C(133,35(d;J_19,1);m- C(132,92(d;J_9,1);p-C(132,93,m/;C(11):131,97(d;J_ 49.3);n-C(130,48(d;J_11,1);m-C(129,55(d;J_6);p- C(129,95	210,86(d://24.1)	
IVc	21,78(t,J_21):22;90(AA'X:J 38,3;J(P'C) 7,2;J(PP') 35,9;PCH ₂)	14.02	A5C(1)(d.88.99)(d.7.13.04);n.C.1.83.33(d.7.18.1);m. C.1.82.83(d.7.94);p.C.1.82.81,mk.C(1)(d.31.75(dd:7 55.3;J.(P*C) 4);n.C.130.38(dd:7.11.6;J.(P*C) 2.5);m.C.129.38(dd:77);p.C.129.54	240.68(d:J-24.D	
PAI	30.94(d: J-26.2)	89.69	<i>ktP-Phench</i> (C(1):133.44(d:J. 51.3);C(132.96(d:J. 10.1); <i>m</i> -C(130.12(d:J.11.1); <i>p</i> -C(132.86 (d:J3); <i>mk(As-Phench</i> (C(1):139.72(d:J. 7);)- (d:J3); <i>mk(As-Phench</i> (C(1):139.72(d:J. 7);)- C(133.65;) <i>m</i> (C(129.68; <i>p</i> -C(129.85)	211.13(d:7-23.1)	
Va	43.90(t; J ⁻ 25.6)	84.03	C(1):133.83(c)/196)/134.19(c)/26.7); o/C(132.22 (c)/55)/132.72(c)/5.5); m-C(129.9)(c)/ 5.5)/130.26(c)/5.5); p-C(132.52	217.35(1.7, 25.1)	
УЬ	29.49(t; J_22.1)	K5.01	C(1):155.09(d:7/19.87/155.30(d:7/20.2), <i>a</i> :C (32.48 (t;7/5/1):132.64(t;7/5/1; <i>m</i> :C(129.78(t;7 5.1):129.92(t;7/5:1); <i>p</i> :C(131.917/132.30	- 1	
Vc.	15 40:29,65(t.J. 17,4;PCH ₅)	\$6.14	C(1):216.67(d):27.3);726.99(d):Z.26.3);45.(1)1.48 (i.J.5.1);42.98(i.J.4.8);m.C(129.5)(t):J 5.1);42.964(i.J.5.1);p.C(131.557132.14	216.29(1.) 26.6)	
VIIA	32.437/32.88(AB: J(AB) 45.3)	87.29	<i>k</i> - C(1):125.32(d), J - S1-5, J(P'C)(1.9); <i>w</i> C(1):34.04 (d): J - 11.15; <i>m</i> -C(129-86(d): J - 13.1); <i>p</i> -C(134, 70) (d): J - 35, <i>m</i> , c(11, 133-27(d): J - 84.55; J (P'C) - 3-25; <i>w</i> -C(134, 60(d): J - 11; <i>m</i> -C(129, 28(d): J - 12, 1); <i>p</i> -C(132, 43(d): J - 3); <i>w</i> -C(129, 28(d): J - 12, 1); <i>p</i> -C(132, 43(d): J - 3); <i>w</i> -C(129, 28(d): J - 12, 1); <i>p</i> -C(132, 43(d): J - 3); <i>w</i> -C(129, 28(d): J - 12, 1); <i>p</i> -C(132, 43(d): J - 3); <i>w</i> -C(129, 28(d): J - 12, 1); <i>p</i> -C(132, 43(d): J - 3); <i>w</i> -C(129, 28(d): J - 12, 1); <i>p</i> -C(132, 43(d): J - 3); <i>w</i> -C(132, 43(d): J - 3); <i>w</i> -C(132, 28(d): J - 12, 1); <i>p</i> -C(132, 43(d): J - 3); <i>w</i> -C(132, 28(d): J - 12, 1); <i>p</i> -C(132, 43(d): J - 3); <i>w</i> -C(132, 43(d): J - 3); <i>w</i> -C(132, 28(d): J - 3); <i>w</i> -C(132, 28(d): J - 3); <i>w</i> -C(132, 43(d): J - 43	211 33(d.) 5.8)	

TABELLE 3. ¹³ C-NMR/DATEN DER KOMPLEXKATIONEN IV, V, VII. VIII UND XI ^a

152

:11.44(d; <i>J</i> 5.0)	211.34(d: <i>J</i> 3.4)	212.07(d: <i>J</i> 6)	211.98(d: <i>J</i> 3.7)	211.94(d: <i>J</i> 2)	219.79(br) - ^c	- 20.13(d; J 30;P(CH ₃) ₃)	- 20.82(d; <i>J</i> 29.P(CH ₃),
k:C(1):125.51(d; J 80.5); o-C:133.31(d; J 10.1); m- C:130.71(d; J 13.1); p-C:135.13(d; J 3).uk: C(1):132.50(d; J 81.5); o-C:131.84(d; J 11.1); m-C:129.67(d; J 12.1); p-C:132.90(d; J 3)	k:C(1):126.42(d;J 79.5); <i>o</i> -C:132.89(d;J 10.1); <i>m</i> -C:130.55(d;J 12.1); <i>p</i> -C:134.79. <i>u</i> k:C(1):133.71(d;J 80.5); <i>o</i> -C:131.70(d;J 10.1); <i>m</i> -C:129.48(d;J 12.1); <i>p</i> -C:132.38	k:C(1):123.73(dd:J 72.4;J(P'C) 2);o-C:134.58(d;J 11.1); m-C:130.01(d:J 13.1);p-C:134.88(d;J4).uk: C(1):131.91(dd:J 75.3;J(P'C) 4);o-C:132.30(d;J 11);m-C:129.42(d;J 13.1);p-C:132.66(d;J 3)	k:C(1):124.33(dd; J 69.4; J(P'C) 5); o-C:133.62(d; J 10.1); m-C:132.37(d; J 11.1); p-C:135.24.uk:C(1): 131.16(dd; J 70.5; J(P'C) 5); o-C:130.79(d; J 11.1); m-C:129.71(d; J 12.1); p-C:132.98	k:C(1):124.94(dd; J 73:J(P'C) ca. 43); o-C:133.19 (d; J 10.1); m-C:132.20(d; J 10.1); p-C:134.84.uk: C(1):132.30(dd; J 75; J(P'C) verdeek1); o-C:130.58 (d: J 10.1); m-C:129.45(d; J 12.1); p-C:132.43	s. € 	C(1):- ': o-C:131.90(kmp); m-C:129.80(kmp); p-C: 131.02/131.33	C(1):136.30(kmp); <i>o</i> -C:131.97/132.96(t; <i>J</i> 8); <i>m</i> - C-129 56.7130.0371; <i>J</i> 8); <i>m</i> -C:130.037/130.63
87.68	87.60	86.84	87.15	87.35	83.67 84 33	79.26	80.95
24.19/26.44(AB; J(AB) 53)	17.01;ca. 30 ^d (PCH ₂)	31.72/32.15(AB: <i>J</i> (AB) 39.4)	k:26.36(d;J 45.5)uk:24.94(d;J 62.1)	18.4;ca. 30 ^d (PCH ₂)	عب عب 	ca. 40(m)	27.46(t; J 21.4)
VIIe	VIIf	VIIg	VIIh	VIIi	VIIIg VIIIb	XIa	AIb

^{*a*} Bruker AM 400 (100.6 MHz); Lösungsmittel: Aceton-*d*₆ und CD₂Cl₂. Verwendete Abkürzungen: d Dublett; *k* R an koordiniertem P; m Multiplett: *uk* R an nichtkoordiniertem P; t Triplett; kmp komplexes Multiplett. AB und AA'X bezeichnen die Spinsysteme, nach denen die beobachteten Multipletts ausgewertet worden sind. J bezeichnet J(PC) (in Hz). ^{*h*} Ausgewertet durch Vergleich mit entsprechenden Daten der freien Liganden und von Komplexen des Typs $[C_5H_5Fe(CO)_2(X=PR_3)]^+$ (vergl. Text). ^{*c*} Signal nicht lokalisiert. ^{*d*} Verdeckt durch Lösungsmittelsignale. ^{*e*} Verdeckt durch Signale der entsprechenden Dicarbonylkomplexen VII.

omplex	³⁴ PNMR " (&(mmm) - 7 in Hz)	μ (CO) h	Komplex	**P-NMR // (& opm)+ / in Hz)	r(CO) ° (cm ⁻¹)
Va	$13.3/\pm 66.2(d; J(PP') 90.4)$	2011;2055	Va	· 33.5	1981
Vb	$= 8.4 \neq +69.4 (d; J(PP') 42.2)$	2011:2054	٧h	- 99.2	1978
Vc	- 13.2/ + 64.9(d; J(PP ²) 4.4)	2008;2054	Vc	+58.4	1966
vd	+ 65.4	2010;2054	PA	*44	0261
PH1.		2010;2056	PIIIA	- 51.7	1975
IIe	$\pm 50.7 / \pm 63.0 (d; J(PP') 60.4)$	2010:2053	VIIIe	- 48.4	1972
J11.	$+47.2/\pm59.8(d; J(PP') 4.9)$	2010:2055	<i>p</i> =		
/IIg	(28.3/ + 34.5(d, J(PP') 8.1))	2003;2048	VIIIg	: 26.6	1964
/11h	+ 42.7/ + 43.5(J(PP [*]) 7.3)	2005;2050	VIIIb	- 43.4	1960
/11i	+ 39.9 / -40.1 (J(PP') 6.6)	2004;2050	<i>p</i>		
Xa	+ 24.9 / + 64.5 (d; J(PP') 6.5)		РХ	$+ 26.8 / + 49.0 ~ m{(d}. J(PP') ~ m{6.5})$	С
Xb	$\pm 34.2/\pm 69.3$ (d: $J(PP') 47.3$)	£	Xc	-+-50.97 + 63.3 (d:J(PP') 63.5)	÷
Xc	$= 29.3 / \pm 64.8$ (d; J(PP') 3.1)		Xf	+47.6/+59.6 (d:J(PP') 4.8)	<i>2</i>
Xd,	+66.3 (s)		N_{9}	$\sim 37.8_{s} = 56.4$ (d: J(PP1) 10.1)	e
Xd.,	- 44.3 (s)		Xh	: 43.5 ? - 44.5 (d:J(PP') 5.4)	
1			Xi	+ 40.27 + 40.8 (d: J(PP') 7.1)	. * .
Xa	+ 20 5(0.7(PP') 52.8(P(CH ₁) ₃)		NIC	- 23.9 (8)	
	= 99.3(d; J(PP') 52.6(1-1) = Ha)				
(Ib	$\sim 25.3({ m dd},J({ m PP}^*) 52.8/(59.5){ m P}({ m CH}_3)_{\gamma}).$				
	+ 38.6(d:J(PP') 55.4) L - L - IIb				
	- 38.7(d:./(PP [*]) 57.1))				

³¹ P-NMR UND IR (r/CO))-DATEN DER KOMPLEXE IV, V. VII-XI

TABELLE 4

E ц Э́С ୍ୟ: ÷. bruker wer wer den wart de Annals absungenieuen versioneren. Er onder hannen wer absongenieuen er igen ge-beobachtet. ^{de} Vergleiche Fext. ^e Von den Kompleven dieser Schen wurden keine zeit. Op-Daten bestimmt.

Bildung zweier Produkte:

Neben 64% des erwarteten Produktes IXd₁ beobachtet man 34% des Komplexes IXd₂, in dem die Koordinationspartner von Phosphor und Arsen vertauscht sind. Als mögliche Interpretation dieses Befundes scheint die Substitution der $[C_5H_5Fe(CO)_2]BF_4$ -Einheit vom Phosphanteil des koordinierten Liganden IId durch eine Ni(CO)₃-Gruppe sinnvoll. Das eliminierte 16 Elektronen-Eisenfragment kann sich durch Koordination eines Acetonmoleküls stabilisieren [3c]. Im abschliessenden Schritt erfolgt die Substitution des koordinierten Acetons durch den nicht-komplexierten Arsan-Teil des Komplexes Ni(CO)₃(P(C₆H₅)₂CH₂As(C₆H₅)₂. Ein simultaner Prozess unter gleichzeitiger Wanderung der C₅H₅Fe(CO)₂-Einheit vom Phosphor zum Arsen unter gleichzeitigem Angriff des Ni(CO)₃-Fragments und Koordinierung am Phosphor kann allerdings nicht ausgeschlossen werden.

Die Koordinierung des Ni(CO)₃-Fragments an VIId-i gelingt problemlos; es wird allerdings eine Zunahme der Bildung von Zersetzungsprodukten (NiX, X = S, Se) beobachtet. Die gemäss Gl. 7 erhaltenen Produkte wurden nicht isoliert, sondern nur mittels ³¹P-NMR Spektroskopie charakterisiert (vergl. Tabelle 4).

Um Rückschlüsse auf die Struktur der Chelatkomplexe V und VIII in Lösung sowie auf den sterischen Anspruch der koordinierten Liganden mittels ³¹P-NMR Spektroskopie zu erhalten, wurden die Komplexe V sowie Gemische aus VII und VIII mit L' = $P(CH_3)_3$ im Verhältnis 1/1 unter photochemischen Bedingungen umgesetzt. Im Falle der Komplexe Va,b werden die gewünschten Substitutionspro-

(Fortsetzung s. S. 158)

Ligand	H-NMK	¹³ ('. NMR ^h	1 [
	$(\delta(ppm): J \text{ in } H_2)$	$(\delta(\text{point}): J \text{ in } H_Z)$	²¹ P.NMR
IIa	CH ₂ :287(t;J(PH) 1.5):C ₆ H ₃ :7.33~7.35(m:12H),7.47~7.52(m:8H)	CH ₃ :28.22(t; J(PC) 23.4):C(1):139.01(t; SJ(PC) 3.8 ^{-d}):o-C:132.86(t; SJ(PC) 10.3):or-C:128.37(t; SJ(PC) 3.5): p-C:128.65(s)	(ð(ppm)) + 22.0
ПЬ	$CH_2(2.17(d;J(PH) 4.5);C_6H_6(7.33-7.41(m;br)$	CH ₃ :24.04(AYX:J(PP') 31.4;J(PC) 21.0:J(P'C) 18.9):C(1):138.32(AAXX:J(PP') 33.4;J(PC) 15.4:J(P'C) - 1.7):o-C:132.77(AAXX:J(PP)33.8); J(PC) 17.9:J(P'C) 1):m-C:128.44(t:XJ(PC) 3.3); p- C:128.62(s)	- 12.3
llc	$\begin{split} \mathrm{CH}_{2,1}(0,0(\mathrm{PH}) = J(\mathrm{HH}) \ 7.8) / \\ 2.19(\mathrm{tr}_{1}/\mathrm{PH}) = J(\mathrm{HH}) \\ 8)(\mathrm{C}_{6}\mathrm{H}_{5}(7.27-7.29(\mathrm{m};\mathrm{br}_{1}12\mathrm{H}),7.33-7.38(\mathrm{m};\mathrm{sH})) \end{split}$	CH ₃ :22.38(t; J(PC)-17.1);PCH ₂ :29.61(t; J(PC) 12.3);C(1):138.53(d; J(PC)-13.1); n-C:132.67(d; J(PC) 18.1):m-C:128.44(d; J(PC)-15.1); n-C:128.40(s)	15.8
Id	CH ₂ :2.69(d: J(PH) 2.7);C ₆ H ₅ :7.25-7.30(m:12H), 7.40 - 7.44(m:8H)	C(H ₂ :26.27(d: J(PC)/26.2); P-Phem1/ C(1):139.18(d: J(PC)/13.1); o-C(132.71(d: J(PC)/ 19/1): m-C(128.54(d; J(PC)/13.1); p-C(128.28(s)/4s)/ Phem1/C(1):140.73(d: J(PC)/7.8); o/C(132.94(s); m- C(128.47(s); p-C(128.35(s)/	19.3
с. Даз	CH ₂ (3,59(tr <i>J</i> (PH)) [4.6):C ₆ H ₅ (7,31+7,35(m;8H),7/40+7/44 (m(4H);7.67+7.75(m;8H)	(H ₂ :33.77(0.7(PC) 58.9);C(1):131.70(dd;J(PC) 110; J(P ^C) 106);o C:130.92(AAYX;J(PP') 12:J(PC) 9.5; J(P ^C) 0.5);m ^C (:128.57(AAYX;J(PP') 13.6;J(PC) 10; J(P ^C) 2.1); p ^{-C} (:132.046s)	- 28.0
व	CH ₂ :22.54(d):7(PH) 2.4):C ₆ H ₅ :7.42-7.46(m:8H),7.49,7.53 (m:4H),7.68-7.73(m:8H)	CH 5:21.55(AA'X;./(PP') 52.3;.J(PC) 71;.J(P'C) 4.7);C(1);131.65(AA'X;.J(PP') 44.1;.J(PC) 107.6;.J(P'C) 7.3);55-C:130.93(1;.SJ(PC) 10.6); <i>m</i> - C:128.86(d:SJ(PC) 8); <i>p</i> -C:132.37(s)	

NMR-DATEN DER NICHT-KOORDINIERTEN LIGANDEN

TABELLE 5

+ 36.4	+ 35.4	+ 44.4	+ 43.1	– 11.7 (J(PY) 17.1 J(P ⁷⁷ Sc) 744)	+ 36.0 (J(PP') 64.8 J(P ⁷⁷ Se) 739)	+ 34.3 (<i>J</i> (P ⁷⁷ Sc) 726)
CH ₂ :14.56(d; J(PC) 3):PCH ₂ :2915/29.86(AB: J(AB) 10.9):C(1):131.76(d; J(PC) 99.6); <i>o</i> -C:130.54(d: J(PC) 10.1): <i>m</i> -C:128.58(d; J(PC) 12.1); <i>p</i> -C:131.76(d: J(PC) 2)	CH ₂ :39:42(t; J(PC) 44.3);C(1):132.39(d; SJ(PC) 87); o- C:131.70(t; SJ(PC) 11.2); m-C:128.28(AAX X; J(PP') 14.8:J(PC) 9.4:J(P'C) 3.3); p-C:131.47(t; J(PC) 2.5)	CH ₂ :25:90(AA'X; J(PP'):62.9; J(PC) 54.1; J(P'C) 0.3):C(1):132.06(AA'X; J(PP') 62.3; J(PC) 80.1; J(P'C) 0.8): <i>o</i> -C:131.16(t; SJ(PC) 10.7); <i>m</i> -C:128.81(t; SJ(PC) 12.2); <i>p</i> -C:131.74(t: SJ(PC) 3.1)	CH ₂ :16.23(s);PCH ₂ :32.24/32.86(AB ; J(AB) 13.8) C(1):132.53(d: J(PC) 80.5); <i>o</i> -C:130.98(d: J(PC) 10.1); <i>m</i> -C:128.59(d: J(PC) 12.1); <i>p</i> -C:131.43(d: J(PC) 3)	CH ₂ :38.48(t; J(PC) 35.3);C(1):130.65(AA'X; J(PP') 20.4; J(PC) 56.4; J(P'C) 21.1); <i>o</i> -C:132.33(AA'X; J(PP') 17.8; J(PC) 10.6; J(P'C) 0.4); <i>m</i> -C:128.27(AA'X; J(PP') 17.8; J(PC) 12.1; J(P'C) 0.8); <i>p</i> -C:131.59(t; SJ 1.3)	CH ₂ :26.51(AA'X;J(PP') 65.4);J(PC) 46.3;J(P'C) 2.1);C(1):130.72(AA'X;J(PP') 66.7;J(PC) 51.6;J(P'C) -14.9); o-C:131.66(t,SJ(PC) 5.3); m-C:128.84(t;SJ(PC) 6.1); p-C:131.84(t;SJ(PC) 1.3)	CH ₂ :17.61(s);PCH ₂ :31.93/32.42(AB; J(AB) 12.2);C(1):131.16(d: J(PC) 75.5); o-C:131.45(d: J(PC) 12.1);m-C:128.61(d: J(PC) 12.1); p-C:131.51(s)
CH ₂ :1.99(m:4H):PCH ₂ :2.52(AA'X; J(PP') 7:J(PH) 11:J(P'H) - 0.03):C ₆ H ₅ :7.37-7.48(m:12H); 7.65-7.71(m:8H)	CH ₂ :3.98(t; J(PH) 4.4);C ₆ H ₅ :7.30–7.35(m;8H);7.39–7.43(m;4H); 7.79–7.84(m;8H)	CH ₂ :2.73(d; <i>J</i> (PH) 2.3):C ₆ H ₄ :7.41–7.48(m:12H):7.77–7.83(m;8H)	CH ₂ :2.06(m):PCH ₂ :2.65(AA'X); J(PP') 6.2:J(PH) 11.6:J(P'H) -0.3):C ₆ H ₅ :7.38-7.49(m:12H),7.74-7.80(m:8H)	CH ₂ :4.33(t; J(PH) 13.3):C ₆ H ₅ :7.29–7.33(m:8H),7.39–7.41(m:4H): 7.80–7.85(m:8H)	CH ₂ :2.85(d;J(PH) 1.7);C ₆ H ₅ :7.41–7.50(m:12H),7.78–7.84(m:8H)	CH ₂ :2.04(m);PCH ₂ :2.76(A A 'X;J(PP') 5.5:J(PH) 11.9:J(P'H) -0.2)
VIc	PIA	Vle	JIV	VIg	VIh	VIi

^{*a*} Bruker AM 400 (400 MHz); Lösungsmittel: CDCl₃; zu den verwendeten Abkürzungen vergl. Tabelle 2. ^{*b*} Bruker WM 300 (75.5 MHz) und Bruker AM 400 (100.6 MHz); Lösungsmittel: CDCl₃, Zu den verwendeten Abkürzungen vergl. Tabelle 3. ^{*c*} Bruker WP 80 (32 MHz) und Bruker WP 80 WG (32 MHz); Lösungsmittel: CDCl₃, ^{*d*} SJ(PC) = Summe der Kopplungskonstanten J(PC) + J(P'C).

dukte XIa,b neben ca. 20% des Verdrängungsproduktes $[C_5H_5Fe(P(CH_3)_3)_3]BF_4 *$ (XIc, Gl. 8) erhalten. Die Bildung von XIc ist auf die hohe Bildungstendenz dieses

symmetrischen Kations sowie auf den hohen Donorcharakter des Liganden L' zurückzuführen. NMR-Untersuchungen an den Reaktionsprodukten der Komplexe VIII mit $P(CH_3)_3$ belegt die Zersetzung der Komplexe VIII (und VII) unter Substitution des koordinierten Chelatliganden (X)L-L(X), wobei als einziges metallorganisches Produkt XIc nachweisbar ist. Daneben wird nur X= $P(CH_3)_3$ (X = S, Se) und Gemische aus IIa,b und VId,e,g,h mittels ³¹P-NMR Spektroskopie nachgewiesen.

Versuche, $P(t-C_4H_9)_3$ anstelle von $L' = P(CH_3)_3$ einzusetzen, führten im Falle der Chelatkomplexe V nicht zur Substitution der koordinierten CO-Gruppe. Dies ist unserer Meinung nach auf den zu hohen sterischen Anspruch des Liganden L' zurückzuführen, der an das bereits sterisch durch die koordinierten Liganden II stark beanspruchte Eisenzentrum nicht angreifen kann.

^{*} Die erhaltenen spektroskopischen Daten des Komplexes XIe stimmen in Rahmen der Messgenauigkeit mit den publizierten Werten überein [9d].

Diskussion der spektroskopische Daten

Bisherige Untersuchungen an den Systemen $[C_5H_5Fe(CO)_{3-n}(PR_3)_n]^+$ [9,14] und $[C_5H_5Fe(CO)_2(X=PR_3)]^+$ [10c,10d] belegen eine hohe Elektronendichte am metallischen Zentrum, die aus spektroskopischen Daten abgeleitet werden kann [9e,13].

Innerhalb der Reihe der Phosphankomplexe $[C_5H_5Fe(CO)_{3-n}(PR_3)_n]^+$ steigt die Elektronendichte am metallorganischen Zentrum bei zunehmender Substitution der koordinierten CO-Gruppen durch Phosphan-Liganden, die gegenüber dem Eisen als bessere Donoren aber schlechtere Akzeptoren als CO fungieren [15]. Allerdings wurden hierbei fast ausschliesslich Liganden wie $P(CH_3)_3$ und $P(OR)_3$ verwendet, die sterisch wenig aufwendig sind und zumeist Reste aufweisen, die die Donorstärke erhöhen. Hingegen führten alle Versuche, Vertreter der Komplexserie [C.H.Fe- $(CO)_{2}$ $(X=PR_{2})_{n}$ ⁺ mit n > 1 zu erhalten, nicht zum Erfolg [16]. Die Interpretation spektroskopischer Befunde weist den Liganden X=PR₃ eine ylidische Grenzform im koordinierten Zustand zu [10d]; das Donor-/Akzeptorverhältnis steigt innerhalb der Reihe O=PR₃ < S=PR₃ < Se=PR₃ < Te=PR₃ stark an [10d,17]. Eine der möglichen Ursachen für die bisherigen Schwierigkeiten bei dem Versuch zur Darstellung von Bis(Chalkogenophosphoran)-Komplexen scheint neben der Instabilität der Systeme aufgrund der elektrostatische Abstossung der freien Elektronenpaare an X in dem Mangel an Akzeptorfunktion am Liganden X=PR₃ zu liegen.

Alkylidenverbrückte Diphosphane und Dichalkogenodiphosphorane erlauben nun sowohl die Synthese der seit längerem bekannten aber wenig spektroskopisch charakterisierten Komplexe des Typs A, C und D, wobei hilfreich ist, dass Röntgenstrukturdaten von Komplexen des Typs D mit Diphosphanen [18] und Dichalkogenodiphosphoranen [19] vorliegen.

Die in Tabelle 2 bis 4 zusammengefassten spektroskopischen Daten der Komplexe der Koordinationsform A mit L-L = II und VI belegen insbesondere anhand der Sonden ν (CO), ¹³C-NMR CO-Shift und, wenn auch weniger deutlich, ¹³C-NMR $C_{s}H_{s}$ -Shift, die auf Änderungen der Elektronendichte am metallischen Zentrum empfindlich reagieren [9e,13], eine Zunahme der Elektronendichte bei zunehmender Zahl der verbrückten CH₂-Gruppen, die als "elektronische" Sperre zwischen beiden unterschiedlichen Phosphoratomen wirken (Komplexe IV). Dies wird auch innerhalb der Komplexserie VII gefunden, wobei zusätzlich beobachtet wird, dass die Selenophosphoran-Komplexe signifikant höhere Lage in der ¹³C-NMR CO-Verschiebung aufweisen als die entsprechenden Thiophosphoran-Komplexen, was auf eine höhere Elektronendichte am Eisen in diesen Komplexen schliessen lässt (vergl. auch [10d]). Innerhalb der Komplexe IX und X, in denen die Koordinationsform D der Ligandensysteme II und VI verwirklicht ist, beobachtet man komplexe ¹H- und ¹³C-NMR-Spektren: Die Ursache hierfür ist die paarweise Inäquivalenz der Phenylgruppen am koordinierten Phosphor, was Röntgenstrukturuntersuchungen an Cyclopentadienyleisen-Komplexen mit chelatisierenden Diphosphanen [18] bestätigen.

³¹P-NMR-Untersuchungen an den Chelatkomplexen V und VIII (soweit aufgrund der Instabilität der Komplexe VIII Daten erhalten werden konnten) belegen die Äquivalenz der Phosphan- bzw. Chalkogenophosphoran-Einheiten und damit die symmetrische Koordinierung dieser Liganden am System $[C_5H_5Fe(CO)L']BF_4$ (zum Chelateffekt und der Bestimmung des Ringeffektes vergleiche [3a,20]. Substitution der CO-Gruppe durch den sterisch etwas anspruchsvolleren Liganden $P(CH_3)_3$ [21] führt bei dem Vierringchelat-Komplex Va unter Erhalt der Äquivalenz der Chelat-Phosphorgruppen zu XIa (Gl. 8). Hingegen wird diese Äquivalenz im Falle des Fünfring-Chelat-Komplexes XIb bei der Substitution aufgehoben: Ursache hierfür ist die stärkere Raumerfüllung um das Eisen in XIb als im gespannteren Komplex XIa. Bei Verwendung des wesentlich stärker raumerfüllenden Liganden $P(t-C_4H_0)_3$ bei der Substitution des koordinierten CO-Gruppe wird hingegen ausser Zersetzung des Ausgangsmaterials keine Reaktion beobachtet.

Innerhalb der Serie der Komplexe IX und X ordnen wir durch Vergleich mit den entsprechenden ³¹P-NMR-Daten der Komplexe IV und VII den jeweils tieferfeldigen Signalen (ca. 64 bis 69 ppm bei IX bzw. ca. 41 bis 60 ppm bei X) dem koordinierten Phosphy.- bzw. Chalkogenophosphoran-Teil am kationischen Cyclopentadienyleisendicarbonyl-System zu. Auf eine Diskussion der Kopplung J(PP) innerhalb der Komplexeserien IV und VII bis X soll an dieser Stelle verzichtet werden, da diese Kopplung von einer Reihe unterschiedlicher Faktoren abhängt [22].

Experimenteller Teil

Sämtliche Arbeiten wurden in Schlenkgefässen unter Argon durchgeführt. Die verwendeten Lösungsmittel wurden nach gängigen Methoden gereinigt und absolutiert. Als Bestrahlungsquelle diente ein Hg-Hochdruckstrahler (Hanau-Heraeus 36E80). Die Entfernung vom äusseren Mantel der Lampe zu den Bestrahlungsgefässen (Duranglas) betrug ca. 12 cm.

Die Ausgangsverbindungen $[C_5H_5Fe(CO)_2]_2$ (I). $(C_5H_5)_2Fe$ und $(C_6H_5)_2P-(CH_2)_nP(C_6H_5)_2$ (IIIa-c: n = 1.3) wurden käuflich erworben und ohne weitere Reinigung verwendet. Die nachfolgend genannten Ausgangsverbindungen wurden nach Literaturvorschriften erhalten: $[(C_5H_5)_2Fe]BF_4$ (III: [23]) und $(C_6H_5)_2-P(X)(CH_2)_n(X)P(C_6H_5)_2$ (VI: X = O [24]; X = S, Se [25]). Für die freundliche Überlassung einer Probe von $(C_6H_5)_2PCH_2As(C_6H_5)_3$ danke ich Herrn Dr. M. Winter.

I. $[C_5H_5Fe(CO)_2L-L]BF_4$ (*IVa d*). Zu einer Lösung von 1.0 g (2.8 mmol) I und 7 mmol des jeweiligen Liganden II in 30 ml CH₂Cl₂ werden 3.5 g (5.6 mmol) III unter intensiven Rühren hinzugegeben. Die Farbe der Lösung schlägt dabei sehr schnell von rot (I) zu gelborange (IV) um. Nach I h wird die Lösung filtriert, auf 1/3 eingeengt und in 100 ml Ether eingetropft. Die Komplexe fallen hierbei als mikrokristalline Pulver aus, die nach der Umkristallisation aus Aceton/Ether (2/1) analysenrein erhalten werden.

2. $[C_5H_5Fe(CO)L-L]BF_4$ (Va-d). Eine Lösung von 3 mmol des jeweiligen Dicarbonylkomplexes IVa-d in 50 ml CH₂Cl₂ wird unter Verfolgung der Reaktion im IR (ν (CO)-Banden) 4–16 h bestrahlt. Die Aufarbeitung erfolgt analog 1.

3. $[C_5H_5Fe(CO)_2(X)L-L(X)]BF_4$ (VIId-i). Entsprechend 1. werden 1.0 g (2.8 mmol) I und 7 mmol des jeweiligen Liganden VI in 30 ml CH₅Cl₅ mit 1.5 g (5.6 mmol) VI umgesetzt.

4. $[C_5H_5Fe(CO)(X)L-L(X)]BF_4$ (VIIId,e,g,h). Eine Lösung von 2 mmol des jeweiligen Komplexes VII in 40 ml CH₂Cl₂ wird 16 h lang bestrahlt. Anschliessend wird die Lösung über Al₂O₃ (5 cm) filtriert, auf 1/3 eingeengt. erneut filtriert und

in 100 ml Ether eingetropft. Nach Umkristallisation aus CH_3CN/E ther (1/2) werden die Komplexe VIII als Gemische mit den Ausgangsverbindungen VII erhalten. Versuche zur chromatographischen Trennung der Gemische (Al₂O₃; Aceton/Ether als Eluent) führen zur Zersetzung der Komplexe.

5. $[C_5H_5Fe(CO)_2(\mu-L-L)Ni(CO)_3]BF_4$ (IXa-d). 0.5 mmol des jeweiligen Komplexes IV werden mit 1.5 ml einer 1.5 *M* Lösung von Ni(CO)₄ in Aceton-d₆ versetzt und 10 min lang bestrahlt. Die Proben werden unmittelbar nach der Präparation filtriert und in ein 5 mm NMR-Röhrchen überführt. Die Komplexe IX wurden nicht isoliert und nur mittels ³¹P-NMR charakterisiert.

6. $[C_5H_5Fe(CO)_2(\mu-(X)L-L(X))Ni(CO)_3]BF_4$ (Xd-i). Entsprechend 5. werden anstelle der Komplexe IV die entsprechende Mengen der jeweiligen Komplexe VII eingesetzt und entsprechend behandelt bzw. charakterisiert.

7. $[C_5H_5Fe(P(CH_3)_3)(L-L)]BF_4$ (XIa,b). Eine Lösung von 2 mmol V in 20 ml CH₂Cl₂ wird mit 2.2 mmol P(CH₃)₃ versetzt und 24 h lang bestrahlt. Die weitere Aufarbeitung der Ansätze erfolgt analog 4.

Als Beiprodukt, das weder durch Chromatographie (vergl. 4) noch durch Umkristallisation abgetrennt werden konnte, wird stets $[C_5H_5Fe(P(CH_3)_3)_3]BF_4$ beobachtet (vergl. Text).

Dank

Prof. Dr. P. Sartori und Prof. Dr. N. Kuhn danke ich für ihr freundliches Interesse an dieser Arbeit. Den Herren Dr. R. Mynott, W. Wisnewski und J. Diemer (Max-Planck-Institut für Kohlenforschung; Mühlheim/Ruhr) danke ich für hilfreiche Diskussionen sowie für die Messung der ¹³C- und ³¹P-NMR Spektren der nichtkoordinierten Liganden. Herrn Dipl. Ing. W. Riemer, Herrn J. Bitter und Frau B. Slykers (Max-Planck-Institut für Strahlenchemie; Mülheim/Ruhr) bin ich für die Messung der ¹H,¹³C-NMR sowie der IR-Spektren der Komplexe zu Dank verpflichtet.

Für die freundliche Überlassung von Trimethylphosphinhydrochlorid bzw. Nickeltetracarbonyl danke ich Herrn Klose (Hoechst AG, Werk Knapsack) bzw. Herrn Dr. P.W. Jolly (Max-Planck-Institut für Kohlenforschung; Mülheim/Ruhr). Der Studienstiftung des Deutschen Volkes danke ich für ein Stipendium.

Literatur

 (a) C.A. McAuliffe, Transition Metal Complexes of Phosphorous, Arsenic and Antimony Ligands, Macmillan Press, London, 1973; (b) C.A. McAuliffe und W. Levason, Phosphine, Arsine and Stibine Complexes of the Transition Elements (Studies in Inorganic Chemistry 1), Elsevier, Amsterdam, 1979.
 2) B.B. King, L. Coard, Chem. 1 (1971) (2)

² R.B. King, J. Coord. Chem., 1 (1971) 62.

^{3 (}a) M.L. Brown, T.J. Meyer und N. Winterton, J. Chem. Soc., Chem. Commun., (1971) 309; (b) R.J. Haines und A.L. Du Preez, Inorg. Chem., 11 (1972) 330; (c) M.L. Brown, J.L. Cramer, J.A. Ferguson, T.J. Meyer und N. Winterton, J. Amer. Chem. Soc., 94 (1972) 8707; (d) E.E. Isaacs und W.A.G. Graham, J. Organomet. Chem., 120 (1976) 407.

^{4 (}a) Vergl. Lit. 3a; (b) Vergl. 3c.

u.a.: (a) G.B. Jacobsen, B.L. Shaw und M. Thornton-Pett, J. Chem. Soc., Chem. Commun., (1986) 13;
 (b) S. Guesmi, P.H. Dixneuf, N.J. Taylor und A.J. Carty, J. Organomet. Chem., 303 (1986) C47; (c)
 S. Aime, R. Gabetto, G. Jannon und D. Ozella, J. Organomet. Chem., 309 (1986) C51; (d) R.H. Dawson und A.K. Smith, J. Organomet. Chem., 309 (1986) C56.

- 6 (a) Vergl. Lit. 3c; (b) D. Sellmann und E. Kleinschmidt, Angew. Chem., 87 (1975) 595; (c) Vergl. Lit. 3d; (d) D. Sellmann und E. Kleinschmidt, J. Organomet. Chem., 140 (1977) 211; (e) P.E. Riley, C.E. Capshew, R. Petitt und R.E. Davis, Inorg. Chem., 17 (1978) 408; (f) P.M. Treichel und D.C. Molzahn, Synth. React. Inorg. Met.-Org. Chem., 9 (1979) 21; (g) S.G. Davies, J. Hibberd, S.J. Simpson, S.U. Thomas und O. Watts, J. Chem. Soc., Dalton Trans., (1984) 701.
- 7 Zum Versuch der Synthese von Liganden des Typs Te=P(Aryl) vergl. R.A. Zingaro, B.H. Steeves und K. Irgolic, J. Organomet. Chem., 4 (1965) 320.
- 8 (a) T.S. Labana und S.S. Sandhu, Chem. Sci. (India), 4 (1978) 37: (b) H.L. Gysling in S. Patai und Z. Rappoport (Hrsg.), Ligand properties of organic selenium and tellurium compounds in The Chemistry of Sclenium and Tellurium Compounds, Vol. 1, J. Wiley and Sons London, 1986.
- 9 (a) H. Schumann, J. Organomet. Chem., 293 (1985) 75; (b) H. Schumann, J. Organomet, Chem., 299 (1986) 169; (c) H. Schumann, Chemiker-Ztg., 110 (1986) 121; (d) H. Schumann, Chemiker-Ztg., 110 (1986) 161; (e) H. Schumann, Chemiker-Ztg., im Druck.
- (a) N. Kuhn und H. Schumann, J. Organomet. Chem., 276 (1984) 55; (b) N. Kuhn und H. Schumann, J. Organomet. Chem., 287 (1985) 345; (c) N. Kuhn und H. Schumann, J. Organomet. Chem., 288 (1985) C51; (d) N. Kuhn und H. Schumann, J. Organomet. Chem., 304 (1986) 181; (e) N. Kuhn und H. Schumann, Inorg. Chim. Acta. 116 (1986) L11; (f) N. Kuhn und H. Schumann, J. Organomet. Chem., 315 (1986) 93
- 11 (a) L. Reger und C. Coleman, J. Organomet. Chem., 131 (1977) 155; (b) H. Schumann, J. Organomet, Chem., 304 (1986) 341.
- 12 (a) H. Schumann, J. Organomet. Chem., 290 (1985) C34; (b) Vergl. Lit. 11b.
- 13 (a) C.A. Tolman, J. Amer. Chem. Soc., 92 (1970) 2953; (b) G.M. Bodner, Inorg. Chem. 14 (1975), 1932.
- 14 Gmelin Handbook of Inorganic Chemistry, Organoiron Compounds B11/B12, Springer Verlag, Berlin 1984/85 und dort zitierte Literatur.
- 15 F. Kober, Grundlagen der Komplexchemie, O. Salle Verlag, Frankfurt a. M. 1979.
- 16 (a) Vergl. Lit. 10d; (b) N. Kuhn, H. Schumann und E. Zauder, unveröffentlichte Ergebnisse.
- 17 N. Kuhn und H. Schumann, J. Chem. Soc., Dalton Trans., im Druck.
- 18 (a) H. Felkin, P.J. Knowles, B. Meunier, A. Mitschler, L. Ricard und R. Weiss, J. Chem. Soc., Chem. Commun., (1974) 44; (b) Vergl. Lit. 6e und dort zitierte unveröffentlichte Daten: (c) R B. English und M.M. De V. Steyn, Acta Cryst., B35 (1979) 954.
- 19 E.W. Ainscough, A.M. Brodie und K.L. Brown, J. Chem. Soc., Dalton Trans., (1980) 1042.
- 20 P.E. Garrou, Chem. Rev., 81 (1981) 229.
- 21 C.A. Tolman, Chem. Rev., 77 (1977) 513.
- 22 P.S. Pregosin und R.W. Kunz in P. Dichl, E. Fluck und R. Kosfeld (Hrsg.), ³⁴P and ³⁴C NMR of Transition Metal Phosphine Complexes (NMR - Basic Principles and Progress, Vol. 16), Springer Verlag, Berlin, 1979.
- 23 (a) H. Schumann, Chemiker-Ztg., 107 (1983) 65; (b) 108 (1984) 289.
- 24 N.P. Nesterova, T.Y. Medued, Y.M. Polikaspor und M.I. Kabaschnik, Izv. Akad. Nauk. SSSR, Ser. Khim., (1974) 2295.
- 25 P.W. Dean, Can. J. Chem., 57 (1979) 754. Die entsprechenden Liganden mit X = S wurden analog durch Verwendung stöchiometrischer Mengen elementaren Schwefels anstelle von Selenpulver dargestellt.